Infinite Log-concavity: Developments and Conjectures

Peter McNamara, Bruce Sagan

Research output: Contribution to journalArticlepeer-review

Abstract

<p> Given a sequence ( <em> a </em> <em> k </em> )= <em> a </em> <sub> 0 </sub> , <em> a </em> <sub> 1 </sub> , <em> a </em> <sub> 2 </sub> ,&hellip; of real numbers, define a new sequence <em> L </em> ( <em> a </em> <em> k </em> )=( <em> b </em> <em> k </em> ) where . So ( <em> a </em> <em> k </em> ) is log-concave if and only if ( <em> b </em> <em> k </em> ) is a nonnegative sequence. Call ( <em> a </em> <em> k </em> ) <em> infinitely log-concave </em> if <em> L </em> <em> i </em> ( <em> a </em> <em> k </em> ) is nonnegative for all <em> i </em> &ges;1. Boros and Moll conjectured that the rows of Pascal's triangle are infinitely log-concave. Using a computer and a stronger version of log-concavity, we prove their conjecture for the <em> n </em> th row for all <em> n </em> &les;1450. We also use our methods to give a simple proof of a recent result of Uminsky and Yeats about regions of infinite log-concavity. We investigate related questions about the columns of Pascal's triangle, <em> q </em> -analogues, symmetric functions, real-rooted polynomials, and Toeplitz matrices. In addition, we offer several conjectures.</p>
Original languageAmerican English
JournalDefault journal
Volume44
StatePublished - Jan 1 2010

Keywords

  • binomial coefficients
  • computer proof
  • Gaussian polynomial
  • infinite log-concavity
  • real roots
  • symmetric functions
  • toeplitz matrices

Disciplines

  • Mathematics

Cite this